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ABSTRACT
Cell Painting protocol is currently emerging as the go-to method for phenotypic screening in drug discovery. This 
approach yields massive amounts of information encoded in multicolor images at single cell resolution, which in turn 
raises issues with proper analysis. In order to address this problem a range of proprietary and open source algorithms 
for cellular feature extraction has been developed, allowing for a semi-automatic analysis of high content data with 
decent reliability.

However, currently available solutions miss out on a significant portion of data available in phenotypic screening 
experiments: the chemical structure of tested compounds. While deriving properties and predictions from compounds’ 
structures is a wholly different branch of cheminformatics, there were few efforts to combine the information from 
images and chemical structures into a single, more robust data structure.

We explored this approach using human-defined descriptors (CellProfiler for images and ECFP for compounds) 
acquiring improved results compared to each of the respective methods alone. To improve even further, we used deep 
representations of images (GapNet) and compounds (R-MAT), achieving state-of-the-art results for mode of action 
prediction in high content screening data analysis.

DATASET
We used a dataset released by Bray et al. [1] to implement and test our approach. It is a publicly available dataset of 
High Content Screening (HCS) images and morphological profiles of 30,000 small-molecule treatments.

The dataset was generated by applying Cell Painting assay protocol. For each compound, 6-48 fields of view were 
acquired with five fluorescent channels. Figure 1 presents some examples.

Using data from the ChEMBL repository [4], we assigned 19 Modes of Action (MoAs) to 2221 compounds from the 
dataset (Figure 4). One compound may have more than one MoA assigned.

To ensure reliability of the presented results, we use a structural split based on the hierarchical clustering of ECFP 
representations. As a result, the data was split into 1740 training and 481 test compounds.

METHODS
The goal of our work is to obtain the model accurately predicting MoA of a compound using HCS images and chemical 
structures as input. To address polypharmacology and the possibility of simultaneous modes of action, we defined our 
problem as a multi-label classification task. We compared a variety of data representations (human-defined and 
AI-based), as well as uni- and multimodal approaches.

Phenotypic representations. We compared two types of phenotypic representations: human-defined features obtained 
with Cell Profiler (CP) and AI-based features extracted from the penultimate layer of a deep convolutional neural network 
(GapNet-PL [2]). To obtain a phenotypic representation of a well, we used maximum aggregation over fields of view. 

Structural representations. Along with the commonly used human-defined Extended-Connectivity Fingerprints (ECFP), 
we used deep feature representations from a proprietary graph transformer model: Relative Molecule Attention 
Transformer (R-MAT) [3].

Combining modalities. To fuse the visual and chemical modalities, we combined phenotypic and structural 
representations via concatenation. For the deep learning-based representations, we first trained the individual models in 
a unimodal setting, and used extracted features for concatenation.

Classification. Random Forest is used to obtain a final prediction. 

RESULTS AND DISCUSSION
To analyze how meaningful the representation types are, we visualized the latent space using the UMAP algorithm. The 
representation obtained from deep learning-based method clusters compound of the same MoA together, thus creating 
more meaningful representations that increases the classifier accuracy (Figure 3).

The effectiveness of the MoA prediction models is measured using the ROC AUC metric. One can observe that the deep 
learning-based models exploiting both types of data achieve the best performance and obtain the highest ROC AUC 
score for each of the MoAs (Figure 4).

Using an averaged ROC AUC score (Figure 5), we conclude that information fusion from both modalities (structural 
and phenotypic) is the most effective due to their synergy (Figure 5).

CONCLUSIONS
Phenotypic and structural modalities are complementary and their combination leads to better model performance.
Using deep learning models improves the performance and reduces the computation time by 4 orders of 
magnitude.
The deep learning multimodal model surpasses traditional approaches based on human-defined features.
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Figure 2. The computed interaction matrices obtained by analysing Molecular Dynamics (MD) trajectories of 
pHLA:TCR complexes, are used by AI algorithms in our MD/AI platform.Figure 1. Randomly selected fields of view and associated chemical structures of compounds with diverse 

known MoAs. ✓ indicates assigned MoA, ✕ indicates not assigned MoA (ground truth).

Figure 3. Two-dimensional visualization of features extracted from images using 
CellProfiler (CP), chemical structures (ECFP), and our multimodal approach based on 
deep learning embeddings. One point corresponded to a single compound and points 
were generated using the UMAP algorithm [5]. One can observe that the multimodal 
representations are superior in separating different MoAs to the human-defined 
features such as CP and ECFP.  

Figure 2. Architecture for multimodal MoA classification. Firstly, HCS images and compound structures are passed through deep learning 
architectures (GapNet and graph-based transformer, respectively) to obtain their multidimensional representations. Then, they are fused to 
create a multimodal feature vector passed to the MoA classifier. ✓ indicates MoA presence, ✕ indicates its absence.
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                            …
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Figure 4. Performance of the models trained on different representations for each 
MoA measured by the ROC AUC score. Here, we compare a classifier trained on 
multimodal features, generated by the proposed model, with classifiers trained on 
human-defined image descriptors (CP) and chemical structure descriptors (ECFP). 
We observe that models trained on multimodal representations are superior to the 
ones trained on human-defined features.

Figure 5. ROC AUC averaged over all of the considered MoAs (top) and 
inference time comparison (bottom). Deep feature representations 
outperform traditional chemical structure descriptors. Deep image 
representations, while achieving a comparable performance to 
CellProfiler features, are much faster to compute and synergize better 
in a multimodal model. Combining modalities significantly improves 
the performance over models trained on individual modalities.
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